# Project #106443 - elementary differential equation

1 .  Determine the region(s) of the x-y plane for which the given D.E. would have

solutions  that are unique according to the existence theorem .                                  [2]

Also, sketch the solution region .

2.  Use Euler’s method to approximate the solution (to four decimal places ) to the given

initial value problem at  x = 0.1, 0.2, 0.3  using steps of size  0.1 (i.e  h = 0.1 ) .

.   [  hint :  f (x, y)  =  y (2 – y)  and  ]         [3]

3. Find the general solution of the following homogeneous linear differential equation

with constant coefficients.                                                                                            [2]

4.  Find the particular solution of the following homogeneous linear differential equation

with constant coefficients.                                                                                            [3]

 Subject Mathematics Due By (Pacific Time) 02/01/2016 08:00 am
TutorRating
pallavi

Chat Now!

out of 1971 reviews
amosmm

Chat Now!

out of 766 reviews
PhyzKyd

Chat Now!

out of 1164 reviews
rajdeep77

Chat Now!

out of 721 reviews
sctys

Chat Now!

out of 1600 reviews

Chat Now!

out of 770 reviews
topnotcher

Chat Now!

out of 766 reviews
XXXIAO

Chat Now!

out of 680 reviews