Project #34152 - Stats test

 

 

Find the indicated probability or percentage for the normally distributed variable.

The variable X is normally distributed. The mean is μ = 15.2 and the standard deviation is σ = 0.9.
Find P(X > 16.1).

 

 

 

 

0.1357

 

0.1587

 

0.8413

 

0.1550

 

3.3 points  

 

 

Question 2

 

 

1.   

2.   

3.  Find the mean for the given sample data. Unless otherwise specified, round your answer to one more decimal place than that used for the observations.

Frank's Furniture employees earned $340.75, $394.04,  https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q5g2.jpghttps://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q5g3.jpg, and https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q5g4.jpg last week. Find the mean wage of the employees. Round your answer to the nearest cent.

4.   

 

$305.99

 

$355.19

 

$367.19

 

$458.98

5.   

6.   

 

 

3.3 points  

 

 

 

Question 3

 

 

1.   

2.   

3.  Provide an appropriate response.

A newly-premiered play just ended that evening at a local theater. Theater management briefly interviews every eighth person leaving the theater to see if that person will recommend the play at that theater to other people. Identify the type of sampling used in this example.

4.   

 

Systematic sampling

 

Stratified sampling

 

Multistage sampling

 

Cluster sampling

5.   

6.   

 

 

3.3 points  

 

 

 

Question 4

 

 

1.   

2.   

3.   

4.  Obtain the five-number summary for the given data.
 
 The test scores of 15 students are listed below.
 
 https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q8g1.jpg  

5.   

6.   

 

42, 54, 70.0, 87, 95

 

42, 52.50, 68, 85.5, 95

 

42, 54, 68, 87, 95

 

42, 52.50, 70.0, 85.5, 95

7.   

8.   

 

 

3.3 points  

 

 

 

Question 5

 

 

1.   

2.   

3.  Use a table of areas to find the specified area under the standard normal curve.

The area that lies to the right of 0.59

4.   

 

0.2190

 

0.7224

 

0.2224

 

0.2776

5.   

6.   

 

 

3.3 points  

 

 

 

Question 6

 

 

1.   

2.   

3.  Identify the study as an observational study or a designed experiment.

A clinic gives a drug to a group of ten patients and a placebo to another group of ten patients to find out if the drug has an effect on the patients' illness.

4.   

 

Designed experiment

 

Observational study

5.   

6.   

 

 

3.3 points  

 

 

 

Question 7

 

 

1.   

2.   

3.  Find the indicated binomial probability. Round to five decimal places when necessary.

What is the probability that 6 rolls of a fair die will show four exactly 2 times?

4.   

 

0.20094

 

0.0134

 

0.0067

 

0.41667

5.   

6.   

 

 

3.3 points  

 

 

 

Question 8

 

 

1.   

2.   

3.  Answer the question.

A magazine publisher mails a survey to every subscriber asking about the timeliness of its subscription service. The publisher finds that only 5% of the subscribers responded. This 5% represents what?

4.   

 

The population

 

The sample

5.   

6.   

 

 

3.3 points  

 

 

 

Question 9

 

 

1.   

2.   

3.  Use a table of areas for the standard normal curve to find the required z-score.

Find the z-score for having area 0.07 to its right under the standard normal curve, that is, find z0.07.

4.   

 

1.39

 

1.45

 

1.48

 

1.26

5.   

6.   

 

 

3.3 points  

 

 

 

Question 10

 

 

1.   

2.   

3.  Find the indicated probability. Round to four decimal places.

A test consists of 10 true/false questions. To pass the test a student must answer at least 8 questions correctly. If a student guesses on each question, what is the probability that the student will pass the test?

4.   

 

0.9893

 

0.0107

 

0.0547

 

0.0439

5.   

6.   

 

 

3.3 points  

 

 

 

Question 11

 

 

1.   

2.   

3.  Find the mean of the random variable.

The random variable X is the number of houses sold by a realtor in a single month at the Sendsom's Real Estate office. Its probability distribution is given in the table. Round the answer to two decimal places when necessary.
 https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q9g1.jpg

4.   

 

3.35

 

3.6

 

3.4

 

3.5

5.   

6.   

 

 

3.3 points  

 

 

 

Question 12

 

 

1.   

2.   

3.  Provide an appropriate response.

The finalists in an essay competition are  https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q3g1.jpg https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q3g2.jpg https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q3g3.jpg https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q3g4.jpg  https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q3g5.jpg and https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q3g6.jpg Consider these finalists to be a population of interest. The possible samples (without replacement) of size three that can be obtained from this population of six finalists are as follows.

 L,M,B L,M,D L,M,E L,M,J L,B,D L,B,E  
 L,B,J L,D,E L,D,J L,E,J M,B,D M,B,E  
 M,B,J M,D,E M,D,J M,E,J B,D,E B,D,J  
 B,E,J D,E,J 

If a simple random sampling method is used to obtain a sample of three of the finalists, what are the chances of selecting Ben, Danny, and Joan?

4.   

 

https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q3g10.jpg 

 

https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q3g7.jpg

 

 https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q3g9.jpg

 

 https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q3g8.jpg 

5.   

6.   

 

 

3.3 points  

 

 

 

Question 13

 

 

1.   

2.   

3.  Find the indicated probability by using the general addition rule.

If you pick a card at random from a well shuffled deck, what is the probability that you get a face card or a spade?

4.   

 

https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q5g1.jpg

 

https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q5g2.jpg

 

https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q5g4.jpg

 

https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q5g3.jpg

5.   

6.   

 

 

3.3 points  

 

 

 

Question 14

 

 

1.   

2.   

3.  Solve the problem. If necessary, round your answer to one more decimal place than that used for the observations.

A scientist used the following data set showing the weight in pounds gained (or lost) by a sample of eight laboratory animals given Drug X. Determine n, https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q6g1.jpg, and https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q6g2.jpg

 8.9 -7.5 2.1 3.0
 -2.9 2.4 5.7 -5.4

4.   

 

n = 10; 
https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q6g9.jpg = 6.3;
 https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q6g10.jpg = 0.63

 

n = 8; 
https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q6g3.jpg = 6.3;
 https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q6g4.jpg = 0.79

 

n = 10; 
https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q6g5.jpg = 6.3;
 https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q6g6.jpg = 0.79

 

n = 8; 
https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q6g7.jpg = 6.3;
 https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%201%20statistics%20on1010130928/f1q6g8.jpg = 0.63

5.   

6.   

 

 

3.3 points  

 

 

 

Question 15

 

 

1.   

2.   

3.  Solve the problem.

A sample of 55 eggs yields a mean weight of 1.76 ounces. Assuming that https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2031123131937/f1q9g1.jpg, find the margin of error in estimating μ at the 95% level of confidence.

4.   

 

0.07 oz

 

0.47 oz

 

0.06 oz

 

0.01 oz

5.   

6.   

 

 

3.3 points  

 

 

 

Question 16

 

 

1.   

2.   

3.  Provide an appropriate response.

Find the population standard deviation. Round to one decimal place as needed.

0, -2, 4, 6

4.   

 

10

 

3.2

 

1.8

 

7.2

5.   

6.   

 

 

3.3 points  

 

 

 

Question 17

 

 

1.   

2.   

3.  Identify the study as an observational study or a designed experiment.

An educational researcher used school records to determine that, in one school district, 84% of children living in two-parent homes graduated high school while 75% of children living in single-parent homes graduated high school.

4.   

 

Designed experiment

 

Observational study

5.   

6.   

 

 

3.3 points  

 

 

 

Question 18

 

 

1.   

2.   

3.  Find the specified probability.

A statistics professor has office hours from 9:00 am to 10:00 am each day. The number of students waiting to see the professor is a random variable, X, with the distribution shown in the table.

https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q6g1.jpg

The professor gives each student 10 minutes. Determine the probability that a student arriving just after 9:00 am will have to wait no longer than 30 minutes to see the professor.

4.   

 

0.40

 

0.95

 

0.80

 

0.25

5.   

6.   

 

 

3.3 points  

 

 

 

Question 19

 

 

1.   

2.   

3.  Find the indicated probability by using the general addition rule.

For a person selected randomly from a certain population, events A and B are defined as follows.

A = event the person is male 
B = event the person is a smoker

For this particular population, it is found that https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q4g1.jpg https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q4g2.jpg and https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q4g3.jpg Find https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q4g4.jpg Round approximations to two decimal places.

4.   

 

0.41

 

0.56

 

0.86

 

0.71

5.   

6.   

 

 

3.3 points  

 

 

 

Question 20

 

 

1.   

2.   

3.  Use a table of areas for the standard normal curve to find the required z-score.

Find the z-score for which the area under the standard normal curve to its left is 0.40

4.   

 

0.25

 

0.57

 

-0.25

 

-0.57

5.   

6.   

 

 

3.3 points  

 

 

 

Question 21

 

 

1.   

2.   

3.  Find the indicated probability by using the special addition rule.

A card is drawn from a well-shuffled deck of 52 cards. What is the probability of drawing an ace or a 6?

4.   

 

https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q2g3.jpg

 

https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q2g2.jpg

 

7

 

https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q2g1.jpg

5.   

6.   

 

 

3.3 points  

 

 

 

Question 22

 

 

1.   

2.   

3.  Use a table of areas to find the specified area under the standard normal curve.

The area that lies between -0.73 and 2.27

4.   

 

0.4884

 

1.54

 

0.7557

 

0.2211

5.   

6.   

 

 

3.3 points  

 

 

 

Question 23

 

 

1.   

2.   

3.  Solve the problem.

A confidence interval for a population mean has a margin of error of 6.4. Determine the length of the confidence interval.

4.   

 

6.4

 

40.96

 

3.2

 

12.8

5.   

6.   

 

 

3.3 points  

 

 

 

Question 24

 

 

1.   

2.   

3.  Find the expected value of the random variable. Round to the nearest cent unless stated otherwise.

In a game, you have a https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q11g1.jpg probability of winning https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q11g2.jpg and a https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q11g3.jpg probability of losing https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2021101131247/f1q11g4.jpg What is your expected value?

4.   

 

$10.15

 

-$8.78

 

-$7.41

 

$1.37

5.   

6.   

 

 

3.3 points  

 

 

 

Question 25

 

 

1.   

2.   

3.  Use a table of areas to find the specified area under the standard normal curve.

The area that lies to the left of 1.13

4.   

 

0.8907

 

0.8485

 

0.1292

 

0.8708

5.   

6.   

 

 

3.3 points  

 

 

 

Question 26

 

 

1.   

2.   

3.  Find the necessary sample size.

Scores on a certain test are normally distributed with a variance of 68. A researcher wishes to estimate the mean score achieved by all adults on the test. Find the sample size needed to assure with 95 percent confidence that the sample mean will not differ from the population mean by more than 4 units.

4.   

 

66

 

8

 

17

 

1111

5.   

6.   

 

 

3.3 points  

 

 

 

Question 27

 

 

1.   

2.   

3.  Calculate the specified probability

Suppose that W is a random variable. Given that P(W ≤ 6) = 0.975, find P(W > 6).

4.   

 

0.025

 

6

 

0.975

 

0

5.   

6.   

 

 

3.3 points  

 

 

 

Question 28

 

 

1.   

2.   

3.  Find the requested confidence interval.

A college statistics professor has office hours from 9:00 A.M. to 10:30 A.M. daily. A sample of waiting times to see the professor (in minutes) is 10, 12, 20, 15, 17, 10, 30, 28, 35, 28, 19, 27, 25, 22, 33, 37, 14, 21, 20, 23. Assuming https://my.berkeleycollege.edu/courses/1/1144_BERKC_MAT_215_SECOL/ppg/test%2031123131937/f1q7g1.jpg find the 95.44% confidence interval for the population mean.

4.   

 

18.8 to 25.8 minutes

 

-7.7 to 7.8 minutes

 

19.5 to 35.1 minutes

 

-3.5 to 3.5 minutes

5.   

6.   

 

 

3.3 points  

 

 

 

Question 29

 

 

1.   

2.   

3.  Determine the possible values of the random variable.

Suppose a coin is tossed four times. Let X denote the total number of tails obtained in the four tosses. What are the possible values of the random variable X?

4.   

 

1, 2, 3

 

0, 1, 2, 3, 4

 

HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT

 

1, 2, 3, 4

5.   

6.   

 

 

3.3 points  

 

 

Question 30

 

 

1.   

2.   

3.  Find the sample standard deviation for the given data. Round your final answer to one more decimal place than that used for the observations.

Christine is currently taking college astronomy. The instructor often gives quizzes. On the past seven quizzes, Christine got the following scores.

52 15 48 27 12 42 68

4.   

 

20.6

 

48

 

12,494

 

9956.6

 

Subject Mathematics
Due By (Pacific Time) 06/27/2014 03:00 pm
Report DMCA
TutorRating
pallavi

Chat Now!

out of 1971 reviews
More..
amosmm

Chat Now!

out of 766 reviews
More..
PhyzKyd

Chat Now!

out of 1164 reviews
More..
rajdeep77

Chat Now!

out of 721 reviews
More..
sctys

Chat Now!

out of 1600 reviews
More..
sharadgreen

Chat Now!

out of 770 reviews
More..
topnotcher

Chat Now!

out of 766 reviews
More..
XXXIAO

Chat Now!

out of 680 reviews
More..
All Rights Reserved. Copyright by AceMyHW.com - Copyright Policy